Quantifying Asymmetric Semantic Relations from Query Logs by Resource Allocation
نویسندگان
چکیده
In this paper we present a bipartite-network-based resource allocation(BNRA) method to extract and quantify semantic relations from large scale query logs of search engine. Firstly, we construct a queryURL bipartite network from query logs of search engine. By BNRA, we extract asymmetric semantic relations between queries from the bipartite network. Asymmetric relation indicates that two related queries could be assigned different semantic relevance strength against each other, which is more conforming to reality. We verify the validity of the method with query logs from Chinese search engine Sogou. It demonstrates BNRA could effectively quantify semantic relations from We further construct query semantic networks, and introduce several measures to analyze the networks. BNRA is not only ‘language oblivious’ and ‘content oblivious’, but could also be easily implemented in a paralleled manner, which provides commercial search engines a feasible solution to handle large scale query logs.
منابع مشابه
Analysis of User query refinement behavior based on semantic features: user log analysis of Ganj database (IranDoc)
Background and Aim: Information systems cannot be well designed or developed without a clear understanding of needs of users, manner of their information seeking and evaluating. This research has been designed to analyze the Ganj (Iranian research institute of science and technology database) users’ query refinement behaviors via log analysis. Methods: The method of this research is log anal...
متن کاملThe semantics of query modification
We present a method that exploits ‘linked data’ to determine semantic relations between consecutive user queries. Our method maps queries onto concepts in linked data and searches the linked data graph for direct or indirect relations between the concepts. By comparing relations between large numbers of user queries, we identify semantic modification patterns. The application of this method to ...
متن کاملQuery expansion based on relevance feedback and latent semantic analysis
Web search engines are one of the most popular tools on the Internet which are widely-used by expert and novice users. Constructing an adequate query which represents the best specification of users’ information need to the search engine is an important concern of web users. Query expansion is a way to reduce this concern and increase user satisfaction. In this paper, a new method of query expa...
متن کاملBridging the gap: Incorporating a semantic similarity measure for effectively mapping PubMed queries to documents
The main approach of traditional information retrieval (IR) is to examine how many words from a query appear in a document. A drawback of this approach, however, is that it may fail to detect relevant documents where no or only few words from a query are found. The semantic analysis methods such as LSA (latent semantic analysis) and LDA (latent Dirichlet allocation) have been proposed to addres...
متن کاملUtility preserving query log anonymization via semantic microaggregation
Query logs are of great interest for scientists and companies for research, statistical and commercial purposes. However, the availability of query logs for secondary uses raises privacy issues since they allow the identification and/or revelation of sensitive information about individual users. Hence, query anonymization is crucial to avoid identity disclosure. To enable the publication of pri...
متن کامل